The Crystal Structure of SrNb₄O₆ Gunnar Svensson and Lars Eriksson Departments of Inorganic Chemistry and Structural Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden Received October 29, 1993; accepted March 2, 1994 Single crystals of $SrNb_4O_6$ were obtained by heat treatment of a pelleted mixture of $Sr_5Nb_4O_{15}$, Nb_2O_5 , and Nb at $1670^{\circ}C$ in sealed Nb tubes. High-resolution electron microscopy (HREM) studies showed the structure to be an intergrowth of alternating slabs of $SrNbO_3$ (perovskite-type structure) and NbO (ordered deficient NaCl-type structure), both two unit cells wide. $SrNb_4O_6$ has a tetragonal unit cell with a=4.1655(3) Å and c=16.223(1) Å and space group P4/mmm, Z=2. The structure model obtained from the HREM images was refined, using single-crystal diffraction data, to $R_f=3.0\%$. © 1995 Academic Press, Inc. ## INTRODUCTION In recent years, many reduced oxoniobates containing isolated or condensed Nb₆O₁₂ clusters have been synthesized. The condensation of Nb₆O₁₂ clusters normally occurs via corner sharing of the Nb₆ octahedra. An extensive discussion is given in Ref. (1). All the compounds with condensed Nb₆O₁₂ clusters can be described as intergrowths between the NbO and the perovskite-type structure. NbO has an ordered deficient NaCl-type structure (2) that can alternatively be described as a threedimensional condensation of Nb₆O₁₂ clusters via corner sharing of the central Nb₆ octahedra (3). A number of such compounds have been synthesized in the BaO-NbO-NbO₂ system. Compounds with one-dimensional (4-8) and two-dimensional infinitely condensed Nb₆O₁₂ clusters have been found (9–12). Their structures and formation via a quasiordered intergrowth or phasoid (13) have been extensively studied by means of highresolution electron microscopy (HREM) (1, 6, 8, 14). The ordered structures found as pure phases or as microregions in the quasiordered crystallites can be considered homologous series. One of these series with infinite twodimensionally condensed Nb₆O₁₂ clusters, A_n Nb_{n+3m} O_{3n+3m} (n = the width of the perovskite slabs and m = the width of the NbO slabs), is formed by compounds exhibiting alternating slabs of perovskite and NbO. For barium, Ba₂Nb₅O₉ (n = 2, m = 1) (9-11), BaNb₄O₆ (n = 1)1, m = 1) (10, 11), and BaNb₇O₉ (n = 1, m = 2) (12) have been reported. In the $SrO-NbO-NbO_2$ system only $Sr_2Nb_5O_9$ (n=2, m=1) (15, 16) has been reported thus far. We report here the structure of a new compound belonging to this homologous series, $SrNb_4O_6$, which differs from that of the isostoichiometric Ba compound. #### **EXPERIMENTAL** The starting materials used were Nb (Merck), Nb₂O₅ (99.9%, Roth), and Sr₅Nb₄O₁₅. In some syntheses 10% SrCl₂ obtained from dried SrCl₂ · 6H₂O (99.0%, Baker Analyzed) was added as flux. Sr₅Nb₄O₁₅ (17) was synthesized by heating a stoichiometric mixture of SrCO₃ (99.9%, Baker Analyzed) and Nb₂O₅ at 1000°C for 10 hr. The sample was reground and reheated at 1100°C for another 10 hr. A mixture of Sr₅Nb₄O₁₅, Nb₂O₅, and Nb, of the nominal composition SrNb₁₂O_{14.5}, was ground, pressed into a pellet, and put in a Nb ampoule which was then sealed in an argon atmosphere. It was heated at 1670°C for 4 hr in a furnace with graphite windings and then cooled (4°C/min) to 1000°C, whereupon the furnace was turned off. After heating, the pellets (both with and without added SrCl₂) had a gray metallic luster, and small black crystals appeared on the surface and in the bulk. X-ray powder diffraction patterns were recorded in Guinier-Hägg cameras (Cu $K\alpha_1$, Si as internal standard) and evaluated with a film scanner. The X-ray powder patterns showed that the samples contained mainly the new phase SrNb₄O₆ and NbO (and SrCl₂ · 6H₂O when SrCl₂ was present in the starting composition). The X-ray pattern of SrNb₄O₆ (see Table 1) could be indexed with a tetragonal unit cell having a = 4.1655(3) and c = 16.223(1) Å. Samples with the nominal starting composition SrNb₄O₆ resulted in multiphasic samples containing SrNb₄O₆, Sr₂Nb₅O₉ and traces of NbO. ## Electron Microscopy For the electron microscopy studies, a part of the sample with the nominal starting composition $SrNb_{12}O_{14.5}$ was crushed in an agate mortar and dispersed in *n*-butanol. A drop of the suspension was put on a holey carbon film FIG. 1. (a) HREM image of SrNb₄O₆ viewed along the a-axis. The large dark crosses correspond to Nb₆ octahedra in the NbO slabs, and the square lattice of smaller spots in between depict the Sr and Nb in the perovskite-type slabs. (b) Structure model of SrNb₄O₆ derived from the HREM image (Sr, large shaded circles; O, empty circles; Nb, small filled circles). supported by a copper grid. Electron diffraction studies (EDS) and microanalysis were made in an JEOL JEM-2000FX with a LINK QX200 system. For the analysis of the Sr: Nb ratio, the thin film approximation, $(c_{Sr}/c_{Nb} =$ k_{SrNb} (I_{Sr}/I_{Nb})), was used (e.g., 18) $(k_{SrNb}$ was determined with Sr₅Nb₄O₁₅ as standard). The X-ray microanalysis of 50 crystallites showed the presence of two types of phases: one with a Sr: Nb ratio of 0.25(1) and one giving only an Nb signal. Electron diffraction patterns of SrNb₄O₆ taken along several zone axes confirmed the unit cell obtained from the X-ray powder patterns, and no indications of superstructure reflections were found. HREM studies were made in a JEOL JEM-200CX microscope having a top-entry double-tilt (±10°) goniometer. An HREM image of SrNb₄O₆ is shown in Fig. 1 with an interpretation. The interpretation of this type of HREM image is rather straightforward (14). The image consists of double rows of large dark spots, or rather crosses, 4.1 Å apart, corresponding to Nb₆ octahedra in double NbO slabs. The dark double rows are separated by a 2.8 Å square lattice of smaller spots, corresponding to Sr and Nb atoms in perovskite-type slabs. The structure model gives the composition SrNb₄O₆, in agreement with the Sr: Nb ratio obtained from X-ray microanalysis, given above. The HREM study indicated the number of defects in the crystallites to be low; occasionally, though, the double NbO slabs were replaced by single or triple slabs. No variation in the perovskite slab width was found in the crystals studied. This differs from what has been reported for Sr₂Nb₅O₉ (15). The reason is probably the higher synthesis temperature used here. Higher synthesis temperatures resulting in crystallites containing less defects has also been observed in the BaO-NbO-NbO₂ system. ## X-Ray Structure Refinement X-ray diffraction data from a small single crystal of $SrNb_4O_6$ were collected on a Stoe-AED2 diffractometer. Experimental conditions and details of the structural refinement are listed in Table 2. The unit cell parameters were determined from 2θ positions for 34 reflections in the range $15^{\circ} < 2\theta < 25^{\circ}$, yielding a = 4.1705(7) and c = 16.234(9) Å, in agreement with those from powder data. The program SHELXL-92 (19) was used for the least-square refinements, with X-ray scattering factors and anomalous dispersion terms for Sr, Nb, and O given therein. The crystal dimensions and the morphology were determined with a JEOL JSM-820 scanning electron microscope (SEM). The crystal was found to have an irregular shape with some satellite crystallites. Correction for absorption was carried out by Gaussian integration. No systematic absences were found among the X-ray reflections or in the ED pattern. After considering the structure model obtained from the HREM images, the space group P4/mmm was chosen in the refinements. Starting coordinates for the refinement were taken from the structure model shown in Fig. 1b. The strong reflections 0.08 and 0.20 were obviously affected by severe secondary extinction and were therefore omitted from the FIG. 1.-Continued refinement. Atomic coordinates and isotropic displacement parameters are given in Table 3. Refinement of the anisotropic displacement parameters did not result in any improvement. The values of the isotropic displacement parameters for some of the oxygen and niobium atoms are clearly nonphysical. One possible reason for this could be residual absorption effects due to the satellite crystallites which were observed using the SEM. They may also explain the somewhat high inner R value, $R_{\rm int} = 4\%$. However, the low $R_{\rm f} = 3.0$ corroborates the correctness of the structure. # **STRUCTURE** The structure of SrNb₄O₆ is shown in Fig. 2, and selected bond lengths are given in Table 4. The structure can be described as an intergrowth of SrNbO₃ (perovskite type) and NbO slabs, each two units wide, having bound- $\label{eq:TABLE 1} TABLE~1$ Indexed X-Ray Powder Diffraction Pattern of SrNb₄O₆ | h k l | $\sin^2 \theta_{\rm obs}$ | $\sin^2\! heta_{ m calc}$ | d_{obs} (Å) | I/I ₀ | | |--------------|---------------------------|---------------------------|------------------------|------------------|--| | 001 | 0.00224 | 0.00225 | 16.30 | 14 | | | 003 | 0.02031 | 0.02029 | 5.40 | 4 | | | 100 | 0.03422 | 0.03420 | 4.164 | 9 | | | 101 | 0.03644 | 0.03645 | 4.035 | 2 | | | 103 | 0.05448 | 0.05449 | 3.3001 | <1 | | | 0 0 5 | 0.05661 | 0.05636 | 3.2377 | <1 | | | 1 1 0 | 0.06844 | 0.06839 | 2.9443 | 1 | | | 104 | 0.07028 | 0.07027 | 2.9057 | 100 | | | 111 | 0.07052 | 0.07065 | 2.9006 | 40 | | | 1 1 3 | 0.08868 | 0.08868 | 2.5867 | 24 | | | 105 | 0.09055 | 0.09056 | 2.5598 | <1 | | | 114 | 0.10446 | 0.10447 | 2.3833 | 14 | | | 007 | 0.11049 | 0.11047 | 2.3174 | 1 | | | 115 | 0.12477 | 0.12476 | 2.1808 | 10 | | | 200 | 0.13675 | 0.13679 | 2.0830 | 61 | | | 201 | 0.13903 | 0.13904 | 2.0659 | 1 | | | 0 0 8/1 0 7 | 0.14427 | 0.14429 | 2.0280 | 15 | | | 203 | 0.15709 | 0.15708 | 1.9436 | 2 | | | 2 1 0 | 0.17101 | 0.17098 | 1.8627 | 4 | | | 2 0 4/2 1 1 | 0.17293 | 0.17286 | 1.8524 | 1 | | | 117/108 | 0.17883 | 0.17887 | 1.8215 | 17 | | | 2 1 2 | 0.17970 | 0.18004 | 1.8171 | <1 | | | 2 1 4 | 0.20705 | 0.20706 | 1.6928 | 31 | | | 109 | 0.21662 | 0.21682 | 1.6550 | 5 | | | 207 | 0.24732 | 0.24726 | 1.5489 | 2 | | | 119 | 0.25089 | 0.25101 | 1.5379 | 3 | | | 2 2 0 | 0.27361 | 0.27358 | 1.4726 | 22 | | | 2 2 1 | 0.27599 | 0.27583 | 1.4663 | 1 | | | 208 | 0.28102 | 0.28108 | 1.4531 | 35 | | | 2 2 3 | 0.29387 | 0.29387 | 1.4230 | 2 | | | 2 1 8 | 0.31528 | 0.31528 | 1.3719 | 2 | | | 0 0 12 | 0.32494 | 0.32466 | 1.3513 | 13 | | | 2 2 5 | 0.33005 | 0.32994 | 1.3408 | <1 | | | 1 1 11 | 0.34109 | 0.34120 | 1.3189 | 4 | | | 3 1 1/3 0 4 | 0.34405 | 0.34422 | 1.3133 | 19 | | | 1 0 12 | 0.35878 | 0.35885 | 1.2860 | 5 | | | 2 0 10/3 1 3 | 0.36224 | 0.36224 | 1.2798 | 9 | | | 3 1 4 | 0.37803 | 0.37804 | 1.2528 | 11 | | *Note*. The unit cell parameters are a = 4.1655(3) and c = 16.223(1) Å; figure of merit, M(20) = 81. ary atoms in common. The NbO slab can also be seen as a double layer of corner-sharing Nb₆ octahedra, of composition Nb₇O₈. In the perovskite-type slab the Sr atom is 12-coordinated by oxygen atoms forming a cubo-octahedron. The Nb(4) is coordinated by six oxygen atoms forming an octahedron. These octahedra share corners in the a-b plane and share apexes with the top of a square pyramid of oxygen atoms around the Nb(3) atom. The base of this square pyramid forms the boundary between the SrNbO₃ and the NbO slabs. On the NbO side of this boundary, Nb(3) is bonded to four Nb(2) atoms. Nb(1) and Nb(2) have a planar four-coordination of oxygen atoms and eight | Chemical formula | SrNb ₄ O ₆ | |-------------------------------------|---| | Formula weight | 1110.5 amu | | Crystal system | Tetragonal | | Space group, Z | P4/mmm, 2 | | Lattice parameters ^a | a = 4.1655(3) Å, b = 16.223(1) Å | | $V(\mathring{A}^3)$ | 281.49(3) | | $D_{\rm calc}$ (g/cm ³) | 6.546(1) | | Crystal shape | Irregular polyhedron | | Crystal size (µm³) from center | {001}, 8; {100}, 20.8; (140), 10.5;
(010), 24.0; (310), 24.0; (310),
16.80; (110), 20.8 | | Intensity of | data collection | |---|---------------------------------------| | Temperature | 25°C | | Diffractometer | STOE/AED2 | | $\lambda(MoK\alpha)$ (Å) | 0.71069 | | Maximum $\sin (\theta)/\lambda (\mathring{A}^{-1})$ | 0.59065 | | Range of h , k , l method | $-4 \leq h \leq 4, -4 \leq k \leq 4,$ | | | $0 \le l \le 19, \omega - 2\theta$ | | Standard reflections | 3 | | Intensity stability | Less than ±2% | | Internal R value | 0.039 | | No. of measured reflections | 959 | | No. of unique reflections | 196 (103 with $F^2 > 3\sigma(F^2)$ | | Criterion for significance | $F^2 \ge 3\sigma(F^2)$ | | Absorption correction | Gaussian integration | | Linear absorption coefficient | 166.5 cm ⁻¹ | | Transmission factor range | 0.5686-0.7718 | ## Structure refinement | Structus | · · · · · · · · · · · · · · · · · · · | |--|---| | Minimization of | $\sum w(\Delta F^2)$ | | Number of refined parameters | 17 | | Weighting scheme | $w = 1/(\sigma^2(F_0^2) + (0.0291 * P)^2 +$ | | | $0.17 * P$), where $P = (\max(F_0, 0))$ | | | $+ 2 * F_c^2$)/3 | | | | | Final R_{ℓ} | 0.030 | | wR^2 | 0.060 | | Goodness of fit | 1.27 | | $(\Delta/\sigma)_{\rm max}$ | 0.000 | | $\Delta \rho_{\min}$ and $\Delta \rho_{\max}$ (e Å ⁻³) | -1.33 and 2.09 | ^a Guinier-Hägg technique. neighboring niobium atoms, each forming a centered tetragonal prism as in NbO. The cubo-octahedron of oxygen atoms around Sr is distorted as in $Sr_2Nb_5O_9$ (16). The Sr-O bond lengths are close to those in $Sr_2Nb_5O_9$ (2.770, 2.903, and 2.930 Å), and the average ($d_{Sr-O} = 2.866$ Å) bond length is close to the value 2.833 found in the $Sr_{0.87}NbO_3$ perovskite (20). As in all intergrowth compounds between $ANbO_3$ and NbO, the NbO₆ octahedron in the perovskite-type slab is dilated parallel to the plane of the NbO slab, here the a-b plane, due to the more rigid Nb₆ octahedra in the NbO TABLE 3 Fractional Atomic Coordinates and Thermal Parameters of SrNb₄O₆ | Atom | Position | x | у | z | $\boldsymbol{\mathit{B}}_{iso}$ | |-------|------------|-----|-----|------------|---------------------------------| | Sr | 2 <i>g</i> | 0 | 0 | 0.1242(6) | 1.1(1) | | Nb(1) | 1d | 1/2 | 1/2 | 1/2 | 0.2(1) | | Nb(2) | 4 <i>j</i> | 0 | 1/2 | 0.3682(1) | 0.3(1) | | Nb(3) | 2h | 1/2 | 1/2 | 0.2482(2) | 0.1(1) | | Nb(4) | 1 <i>c</i> | 1/2 | 1/2 | 0 | 0.6(1) | | O(1) | 2e | 0 | 1/2 | 1/2 | 1.6(8) | | O(2) | 2g | 0 | 0 | 0.3691(20) | 0.3(6) | | O(3) | 4i | 1/2 | 0 | 0.2382(9) | 1.2(5) | | O(4) | 2h | 1/2 | 1/2 | 0.1206(34) | 0.6(7) | | O(5) | 2 <i>f</i> | 0 | 1/2 | 0 | 2.8(8) | *Note.* Further details of the crystal structure investigation may be obtained from the Fachinformationszentrum Energie, Physik, Mathematik, W-7514 Eggestein-Leopoldshafen, FRG, upon giving the depository number CSD-57787, the name of the authors, and the journal citation. slab. To compensate for this, the remaining Nb-O bond lengths are shortened, here Nb(4)-O(4). Nevertheless, the average Nb(4)-O distance is longer than expected for pentavalent niobium. The Nb-Nb bond lengths increase $((d_{\text{Nb(3)-Nb(2)}} = 2.853 \text{ Å} < d_{\text{Nb(2)-Nb(2)}} = 2.945 \text{ Å} < d_{\text{Nb(2)-Nb(1)}} = 2.984 \text{ Å})$ when going toward the center of the NbO slab. This effect mirrors an increasing similarity in the bonding situation to NbO, $d_{\text{Nb-Nb}} = 2.977 \text{ Å}$. A similar trend has often been observed for compounds with condensed Nb₆O₁₂ clusters, FIG. 2. Structure model of SrNb₄O₆. TABLE 4 Selected Interatomic Distances (Å) with esd's in Parentheses in $SrNb_4O_6$ | Sr-4* O(3) | 2.786(12) | |----------------|-----------| | Sr-4* O(5) | 2.897(6) | | Sr-4* O(4) | 2.946(1) | | Nb(1)-4* O(1) | 2.083(1) | | Nb(1)-8* Nb(2) | 2.984(2) | | Nb(2)-2* O(2) | 2.083(1) | | Nb(2) - O(3) | 2.110(15) | | Nb(2)-O(1) | 2.137(2) | | Nb(2)-2* Nb(3) | 2.853(3) | | Nb(2)-4* Nb(2) | 2.945(1) | | Nb(2)-2* Nb(1) | 2.984(2) | | Nb(3)-O(4) | 2.068(56) | | Nb(3)-4* O(3) | 2.089(1) | | Nb(3)-4* Nb(2) | 2.853(3) | | Nb(4)-2* O(4) | 1.957(55) | | Nb(4)-4* O(5) | 2.083(1) | | | | e.g., $BaNb_7O_9$ (12), $Ba_3Nb_{16}O_{23}$ (8), and $Sr_2Nb_5O_9$ (16). The only exception known so far is KNb_4O_6 (21). This is also reflected in the corresponding volume of the central NbO unit in $SrNb_4O_6$ (74.2 ų), defined by the eight Nb(2) atoms around the Nb(1) atom. It is very close to the volume of NbO (74.6 ų) (2) and similar units in other compounds with Nb₆ octahedra sharing at least five corners, e.g., $BaNb_7O_9$ (75.7 ų) (12), $Ba_3Nb_{16}O_{23}$ (75.6 ų) (8), and $Ba_4Nb_{17}O_{26}$ (74.2 ų) (5). ## DISCUSSION As mentioned above, a number of reduced oxoniobates exist with structures that can be described as intergrowths between perovskite- and NbO-type units. To understand mixed-valence compounds as these—for example, why BaNb₄O₆ contains a single slab (Fig. 3) whereas SrNb₄O₆ has double slabs—it is necessary to discuss the electron balance in them. The electron balance is intimately connected with the number of electrons involved in metal-metal bonding. From an ionic model assuming Sr²⁺, O²⁻, and a Nb(4)⁴⁺ in SrNb₄O₆, 19 valence electrons are available for Nb-Nb bonding in the NbO block. This is the same number as in BaNb₇O₉. However, in SrNb₄O₆ as well as in several other reduced oxoniobates with Nb₆O₁₂ clusters there is a full NbO₆ octahedron, where the valence of the Nb atom is not obvious. In a fully occupied SrNbO₃ it would be +4, while in KNbO₃ it is +5. Consequently, there is the possibility of a charge transfer, δ ($0 \le \delta \le 1 e^-$), from Nb in the NbO₆ octahedron to the NbO slab in $SrNb_4O_6$, giving $19 + \delta$ electrons available for metal-metal bonding. The bonding in discrete Me_6X_{12} clusters has been exam- ined in some detail. It has been shown that the closed valence-bond description corresponds to eight three-center two-electron (3c/2e) bonds at the faces of the Me₆ octahedron, giving a maximum of $16\ e^-$ participating in Nb–Nb bonding (22, 23). For oxoniobates a value of $14\ e^-$ seems to be optimum, due to a strong Nb–O antibonding contribution to the highest Nb–Nb bonding levels (1). A comparison of the maximum number of electrons available for 3c/2e bonds with the average Nb–Nb bond length for condensed Nb₆O₁₂ cluster gives a good correlation: from NbO (2.98 Å, 1.12 e^-) via KNb₄O₆ (2.96 Å, 1.12 e^-), BaNb₇O₉ (2.95 Å, 1.18 e^-), BaNb₄O₆ (2.93 Å, 1.25 e^-), Ba₃Nb₁₆O₂₃ (2.93 Å, 1.25 e^-), BaNb₅O₈ (2.87 Å, 1.38 e^-) to the discrete Nb₆O₁₂ clusters in SrNb₈O₁₄ (2.82 Å, 1.75 e^-) (24). The shorter average Nb–Nb bond length in SrNb₄O₆ (2.93 Å, 1.18 + δ /16, 16 being the number of Nb–Nb 3c/2e bonds) than in BaNb₇O₉ would then indicate charge transfer, δ , giving more electrons involved in Nb–Nb bonding in the former compound. Similar effects have been observed for the pairs Ba₂Nb₅O₉ (2.91 Å, 1.25 + δ /8)–BaNb₄O₆ (2.93 Å, 1.25 e⁻) and Ba₃Nb₁₆O₂₃(2.93 Å, 1.25 e⁻)–Ba₄Nb₁₇O₂₆(2.92 Å, 1.25 + δ /32). Ba₂Nb₅O₉ and Ba₄Nb₁₇O₂₆ have NbO₆ octahedra in the perovskite-type slabs, while BaNb₄O₆ and Ba₃Nb₁₆O₂₃ do not. The significantly longer average Nb–Nb bond in KNb₄O₆ than in BaNb₄O₆, despite the small difference in ionic radius for K⁺ = 1.64 Å (25) and Ba²⁺ = 1.61 Å (25), indicates that the difference between the average Nb–Nb distances in FIG. 3. Structure model of BaNb₄O₆. between SrNb₄O₆ and BaNb₇O₉ is not only an effect of the size difference between Sr²⁺ (1.18 Å (25)) and Ba²⁺. Motifs of the mutual adjunction (26) and bond order sums (27) are listed in Table 5. An approximate assignment of oxidation state can often be made from bond order sums, but the values can deviate from those expected for an ionic model, as is the case for reduced oxoniobates (1). The deviations for SrNb₄O₆ are very similar to those found for other intergrowth compounds containing Nb_6O_{12} clusters, e.g., $Sr_2Nb_5O_9$ and $BaNb_7O_9$. The only exception is Nb(4), with $\sum s_i = 4.28$. As discussed above, the valence of this niobium atom is related to the amount of charge transfer (δ) to the NbO slab. The bond order sum for Nb(4) is significantly lower than that found in $Sr_{0.95}NbO_3$ ($\Sigma s_i = 4.57$), $Sr_2Nb_5O_9$ ($\Sigma s_i = 4.57$), and $SrNb_8O_{14}$ ($\Sigma s_i = 4.55$). This indicates a valence closer to +4 in SrNb₄O₆ than in Sr₂Nb₅O₉ and SrNb₈O₁₄, suggesting less charge transfer to the NbO slab than in those compounds. The structure of the isoelectronic BaNb₄O₆ contains single perovskite and NbO slabs. It is obvious that the origin of the structural difference between BaNb₄O₆ and SrNb₄O₆ is the size difference between Sr²⁺ and Ba²⁺. In Sr₂Nb₅O₉ and SrNb₄O₆ there is a larger mismatch to be compensated for between the perovskite unit and the NbO unit than in the Ba analogues. For Sr₂Nb₅O₉ it has been argued that the large charge transfer (compared to Ba₂Nb₅O₉), giving shorter Nb-Nb bonds, stabilized the structure (16). It is interesting that the existence of a Sr TABLE 5 Motifs of Mutual Adjunction (26) and Bond Order Sums $\sum s_i$ (27) in SrNb₄O₆ | | $2*O(1)^{i-i}$ | $2^*\mathrm{O}(2)^{i-i}$ | $4*\mathrm{O}(3)^{i-i}$ | $2*O(4)^a$ | 2*O(5) | CN | $\sum s_i$ | |------------|----------------|--------------------------|-------------------------|------------|--------|----|------------| | 2*Sr | _ | | 4/2 | 4/4 | 4/4 | 12 | 1.57 | | Nb(1) | 4/2 | | _ | | _ | 4 | 2.52 | | 4*Nb(2) | 1/2 | 2/4 | 1/1 | _ | _ | 4 | 2.38 | | 2*Nb(3) | _ | _ | 4/2 | 1/1 | _ | 5 | 3.13 | | Nb(4) | _ | _ | _ | 2/1 | 4/2 | 6 | 4.28 | | CN | 4 | 4 | 5 | 6 | 6 | | | | $\sum s_i$ | 2.34 | 2.50 | 2.15 | 1.96 | 1.74 | | | Note. CN is the coordination number. compound isotypic with $BaNb_4O_6$ was excluded in that paper due to the absence of stabilizing charge transfer in such a structure. $SrNb_4O_6$ fits well into this picture, since the charge transfer, although smaller than that in $Sr_2Nb_5O_9$, between the perovskite slab and the NbO slab decreases the mismatch between them. Band structure calculations by the extended Hückel method (28) have been used successfully for the interpretation of bonding in metal oxides (29). In Ba₂Nb₅O₉, Sr₂Nb₅O₉, and Ba₄Nb₁₄O₂₃ such calculations indicate full charge transfer, δ , from Nb in the NbO₆ octahedra to the NbO units. The t_{2g} band of the Nb in the perovskite slab is above the Fermi level, thus giving an Nb⁵⁺ ion. For SrNb₄O₆, a tail of the t_{2g} band is below the Fermi level, indicating a valence lower than +5, as shown in Fig. 4. FIG. 4. (a) Projection of the atomic orbitals of Nb(4) in the perovskite slab. The t_2 orbitals extend slightly below the Fermi level, indicating a valence somewhat lower than +5 for Nb(4). COOP curves for Nb-Nb (b) and Nb-O (c) interactions in the NbO slabs, showing a close to optimal filling of the bands. The COOP (crystal orbital overlap population) (30) for Nb-Nb and Nb-O overlap in the NbO slabs shows a close to optimal filling of the bands, very similar that found for BaNb₇O₉ (12). The Nb-Nb bonding states are not completely filled. A further filling would also populate the Nb-O antibonding states, which would lead to a net destabilization of the structure. #### CONCLUSIONS A new compound, $SrNb_4O_6$, has been synthesized, and its structure was determined from HREM images. The structure model was refined using single-crystal X-ray data. The structure consists of alternating slabs of perovskite ($SrNbO_3$) and NbO structure, both two units wide. The compound belongs to the homologous series $A_nNb_{n+3m}O_{3n+3m}$ (n = the width of the perovskite slabs and m = the width of the NbO slabs, A = K, Sr, Ba), with m = n = 2. This is in contrast to the Ba analogue, $BaNb_4O_6$ (m = n = 1), which contains alternating single unit slabs. The reason for the difference is the size difference between Sr^{2+} and Ba^{2+} . The interatomic distances found in $SrNb_4O_6$ fit well with those found in other intergrowth compounds between perovskite and NbO. #### ACKNOWLEDGMENTS This work has been supported by the Swedish Natural Science Research Council. #### REFERENCES - J. Köhler, G. Svensson, and A. Simon, Angew. Chem. 104, 1463 (1992); Angew. Chem. Int. Ed. Engl. 31, 1437 (1992). - 2. G. Brauer, Z. Anorg, Allg. Chem. 248, 1 (1941). - 3. H. Schäfer and H.-G. Schnering, Angew. Chem. 76, 833 (1964). - V. G. Zubkov, V. A. Perelyaev, I. F. Berger, I. A. Kontzevaya, O. V. Makarova, S. A. Turzhevskii, V. A. Gubanov, A. V. Voronin, - V. I. Mirmilstein, and A. E. Kar'kin, Sverkhprovodyaschie Fiz. Khim, Tekh. 3, 2121 (1990). - V. G. Zubkov, V. A. Perelyaev, A. P. Tyutyunnik, I. A. Kontsevaya, D. V. Makarova, and G. P. Shveikin, Rep. Russ. Acad. Sci. 325, 740 (1992). - G. Svensson, J. Köhler, M. T. Otten and A. Simon, Z. Anorg. Allg. Chem. 619, 133 (1993). - 7. G. Svensson and J. Grins, Acta Crystallogr. Sect. B 49, 626 (1993). - V. G. Zubkov, V. A. Pereleyaev, A. P. Tyutyunnik, I. A. Kontsevaya, V. I. Voronin, and G. Svensson, J. Alloys Comp. 203, 209 (1994). - 9. G. Svensson, Mater. Res. Bull. 23, 437 (1988). - V. G. Zubkov, V. A. Perelyaev, I. F. Berger, V. I. Voronin, I. A. Kontzevaya, and G. P. Shveikin, *Dokl. Akad. Nauk SSSR Kristallogr* 312, 615 (1990). - G. Svensson, J. Köhler, and A. Simon, J. Alloys Comp. 176, 123 (1991). - G. Svensson, J. Köhler, and A. Simon, Angew. Chem. Int. Ed. Engl. 31, 212 (1992); Angew. Chem. 104, 192 (1992). - 13. A. Magnéli, Microsc. Microanal. Microstruct. 1, 1 (1990). - 14. G. Svensson, Microsc. Microanal, Microstruct, 1, 343 (1990). - 15. G. Svensson, Acta Chem. Scand. 44, 222 (1990). - G. Svensson, J. Köhler, and A. Simon, Acta Chem. Scand. 46, 244 (1992). - V. I. Spitsyn, E. A. Ippolitova, L. M. Kovba, L. N. Lykova, and P. P. Leschenko, Russ. J. Inorg. Chem. 27, 464 (1982). - 18. A. K. Cheetham, and A. J. Skarnelius, Anal. Chem. 53, 1060 (1981). - 19. G. M. Sheldrick, (1993). In preparation. - B. Hessen, S. A. Sunshine, T. Siegrist, and R. Jimenez, *Mater. Res. Bull.* 26, 85 (1991). - 21. G. Svensson, J. Solid State Chem. 90, 249 (1991). - 22. F. A. Cotton and T. E. Haas, *Inorg. Chem.* 3, 10 (1964). - 23. S. F. A. Kettle, Theor. Chim. Acta 3, 211 (1965). - J. Köhler, A. Simon, S. J. Hibble, and A. K. Cheetham, J. Less-Common. Met. 142, 123 (1988). - 25. R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976). - R. Hoppe, Angew. Chem. 92, 106 (1980); Angew. Chem. Int. Ed. Engl. 19, 110 (1980). - I. D. Brown and D. Altermatt, Acta Crystallogr. Sect. B 41, 244 (1985). - 28. R. Hoffmann, J. Chem. Phys. 39, 1397 (1963). - R. A. Wheeler and R. Hoffmann, J. Am. Chem. Soc. 110, 7315 (1988) - R. Hoffmann, "Solids and Surfaces. A Chemist View of Bonding in Extended Structures." VCH, Weinheim, Germany, 1988.